Author(s)

S. M. Lawrie, H. C. Whalley, D. E. Job, E. C. Johnstone

ISBN

0077-8923 (Print) 0077-8923 (Linking)

Publication year

2003

Periodical

Ann N Y Acad Sci

Periodical Number

Volume

985

Pages

445-60

Author Address

Edinburgh University, Department of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, Scotland, UK. s.lawrie@ed.ac.uk

Full version

Schizophrenia is characterized by delusions and hallucinations, which tend to respond to treatment with dopamine receptor blockers, and a loss of motivation and affect, which do not. Structural magnetic resonance imaging (sMRI) has convincingly demonstrated reduced volumes of the amygdala-hippocampal complex (AHC) and other limbic and paralimbic structures, on both manual tracing and automated analyses. The Edinburgh High-Risk Study (EHRS) of initially healthy adolescents with at least two affected relatives has found that AHC volumes are reduced pre-morbidly but not to schizophrenic levels, suggesting that further volume reductions may be associated with the onset of schizophrenia. AHC volumes appear to be genetically mediated in families with a dominant pattern of transmission, whereas prefrontal lobe and basal ganglia volumes are related to genetic liability to schizophrenia in the generality of high-risk subjects. Temporal lobe volumes may fall as psychotic symptoms develop, in the context of drug abuse and stress. Neuropsychological testing has also demonstrated pre-morbid impairments and symptom-related deterioration. More detailed analyses of the temporal lobe changes on sMRI and fronto-temporal dysconnectivity on fMRI are in progress. These findings are discussed with reference to other indications of pre-morbid developmental disturbance in our high-risk subjects, animal models of schizophrenia, and reliable findings from neuropathological, neuropsychological, and functional imaging studies of patients with schizophrenia.