Author(s)

D. Relan, T. MacGillivray, L. Ballerini, E. Trucco

ISBN

1557-170X (Print)1557-170X (Linking)

Publication year

2013

Periodical

Conf Proc IEEE Eng Med Biol Soc

Periodical Number

Volume

2013

Pages

7396-9

Author Address

Full version

For the discovery of biomarkers in the retinal vasculature it is essential to classify vessels into arteries and veins. We automatically classify retinal vessels as arteries or veins based on colour features using a Gaussian Mixture Model, an Expectation-Maximization (GMM-EM) unsupervised classifier, and a quadrant-pairwise approach. Classification is performed on illumination-corrected images. 406 vessels from 35 images were processed resulting in 92% correct classification (when unlabelled vessels are not taken into account) as compared to 87.6%, 90.08%, and 88.28% reported in [12] [14] and [15]. The classifier results were compared against two trained human graders to establish performance parameters to validate the success of classification method. The proposed system results in specificity of (0.8978, 0.9591) and precision (positive predicted value) of (0.9045, 0.9408) as compared to specificity of (0.8920, 0.7918) and precision of (0.8802, 0.8118) for (arteries, veins) respectively as reported in [13]. The classification accuracy was found to be 0.8719 and 0.8547 for veins and arteries, respectively.