Author(s)

M. R. Dweck, M. W. Chow, N. V. Joshi, M. C. Williams, C. Jones, A. M. Fletcher, H. Richardson, A. White, G. McKillop, E. J. van Beek, N. A. Boon, J. H. Rudd, D. E. Newby

ISBN

1558-3597 (Electronic) 0735-1097 (Linking)

Publication year

2012

Periodical

J Am Coll Cardiol

Periodical Number

17

Volume

59

Pages

1539-48

Author Address

Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom. MDweck@staffmail.ed.ac.uk

Full version

OBJECTIVES: With combined positron emission tomography and computed tomography (CT), we investigated coronary arterial uptake of 18F-sodium fluoride (18F-NaF) and 18F-fluorodeoxyglucose (18F-FDG) as markers of active plaque calcification and inflammation, respectively. BACKGROUND: The noninvasive assessment of coronary artery plaque biology would be a major advance particularly in the identification of vulnerable plaques, which are associated with specific pathological characteristics, including micro-calcification and inflammation. METHODS: We prospectively recruited 119 volunteers (72 +/- 8 years of age, 68% men) with and without aortic valve disease and measured their coronary calcium score and 18F-NaF and 18F-FDG uptake. Patients with a calcium score of 0 were used as control subjects and compared with those with calcific atherosclerosis (calcium score >0). RESULTS: Inter-observer repeatability of coronary 18F-NaF uptake measurements (maximum tissue/background ratio) was excellent (intra-class coefficient 0.99). Activity was higher in patients with coronary atherosclerosis (n = 106) versus control subjects (1.64 +/- 0.49 vs. 1.23 +/- 0.24; p = 0.003) and correlated with the calcium score (r = 0.652, p < 0.001), although 40% of those with scores >1,000 displayed normal uptake. Patients with increased coronary 18F-NaF activity (n = 40) had higher rates of prior cardiovascular events (p = 0.016) and angina (p = 0.023) and higher Framingham risk scores (p = 0.011). Quantification of coronary 18F-FDG uptake was hampered by myocardial activity and was not increased in patients with atherosclerosis versus control subjects (p = 0.498). CONCLUSIONS: 18F-NaF is a promising new approach for the assessment of coronary artery plaque biology. Prospective studies with clinical outcomes are now needed to assess whether coronary 18F-NaF uptake represents a novel marker of plaque vulnerability, recent plaque rupture, and future cardiovascular risk. (An Observational PET/CT Study Examining the Role of Active Valvular Calcification and Inflammation in Patients With Aortic Stenosis; NCT01358513).